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ABSTRACT

If G is a simple graph with minimum degree d(G) satisfying 6(G) = §(I¥(G)| + 1) the total chromatic
number conjecture holds; moreover if §(G) = §¥(G)| then x,(G) < A(G)+3. Also if G has odd order and
is regular with d(G) = 3+/7|V(G)| then a necessary and sufficient condition for x,(G) = A(G)+1 is given.

1. Introduction

The graphs in this paper will be simple—that is, they will have no loops or
multiple edges. An edge-colouring of a graph G is a map ¢: E(G) - €, where € is a set
of colours, such that no two adjacent edges receive the same colour. The least value
of |%| for which G has an edge-colouring with |€| colours is the chromatic index (or
edge-chromatic number) y’(G) of G. A famous result of Vizing [19] states that, for a
graph G, A(G) < ¥ (G) < A(G)+1, where A(G) is the maximum degree of G. If
x'(G) = A(G), then G is of class 1, and if ¥'(G) = A(G)+1, then G is of class 2. In
[6] the first two authors showed that, if G is a regular graph of even order satisfying
d(G) = §V(G)|, where d(G) denotes the common degree of the vertices of a regular
graph, then G is of class 1. In [7] they gave another proof of this resuit, placing it in
a somewhat wider context. In [8] they improved the bound to d(G) = ¥(v/7— 1)|V(G)],
and in [14] the second author generalized it even further.

A vertex-colouring of a graph G is a map y: ¥(G) — %, such that no two adjacent
vertices receive the same colour.

A total-colouring of a graph G is a map 6: E(G) U V(G) — €, such that no two
incident or adjacent elements of G receive the same colour. The least value of |%|
for which G has a total-colouring with |€| colours is the total chromatic number
xr(G) of G. A long-standing and notoriously difficult conjecture of Behzad [2] is that
A(G)+1 < x,(G) < A(G)+2 (of course the lower bound is obvious). Several quite
good upper bounds for the total chromatic number have been discovered recently.
The first of these, due to Hind [15], is that

xr(G) < x'(G)+2[v x(G)},
where x(G) and x'(G) are the chromatic number and the chromatic index of G
respectively. The second, due to Chetwynd and Higgkvist [5], is that if ¢! > |V(G)|
then
1(G) < X(G)+¢.

The third, also due to Hind [16], is that
14(9)

1(G) < A(G)+2 [W] +1.
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We perhaps should mention here that earlier bounds on the list chromatic number
were obtained which gave as a bonus bounds on the total chromatic number. The
earliest of these was due to Bollobds and Harris [4], and their result yielded the bound
x2(G) < FA(G) +o(A(G)).

If x,(G) = A(G) + 1, then we shall say that G is of type 1, and if y,(G) = A(G) +2,
then we shall say that G is of type 2. No graphs have been shown to be of other than
type 1 or type 2, which supports Behzad’s conjecture. Let 6(G) denote the minimum
degree of a graph. In this paper we characterize the regular graphs of odd order
satisfying d(G) = 3+/7|V(G)| which are of type 1 and those which are of type 2.
We also show, amongst other things, that the total chromatic number conjecture
is true for graphs G satisfying 6(G) = (| V(G)|+1) and that if §(G) = 3|V(G)| then
1r(G) < A(G)+3. In [14] the second author recently evaluated x,(G) when G is a
graph of even order with a spanning star. It is beginning to seem that the total
chromatic number is amenable to study, even in the absence of an analogue of
Vizing’s theorem.

We remark that the lower bounds on 6(G) in all our theorems reflect nothing more
than the limitations of our method of proof. We know of nothing to suggest that the
‘correct’ lower bounds should not in every case be much lower still.

Finally we remark that there is a lot of difference in the results we have been able
to prove between the cases when |V(G)| is even and when it is odd. To reflect this, the

two cases are treated in separate sections.
2. Preliminary results
In [14] the second author proved the following.

LEMMA |. Let G be a graph of even order, |\V(G)| = 2n. If G has r vertices of
maximum degree, and 6(G), the minimum degree, satisfies

G)=n+r+4
then G is of class 1.
In [8] the first two authors proved the following.

LeMMA 2. Let G be a regular graph of degree d(G) and of even order satisfying
d(G) = (v 1-DIV(G).

Then G is of class 1.

The next lemma is an extension due to Berge [3] of a well-known theorem of
Chvatal [10].

LemMa 3. Let G be a graph of order n and degrees d, < d, < ... <d,. Let q be an
integer, 0 < g < n—3. If, for every k with q <k <}(n+gq), the following condition
holds :

d,<k=d,_,>n—k+q

then, for each set F of independent edges with |F| = q, there exists a Hamiltonian cycle
containing F.
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The next lemma is due to Erdos and Posa [11].

LEMMA 4. A simple graph G contains a matching of size at least
min {d(G), [3 V(G)II}-

3. Graphs of odd order

In this section we characterize type 1 and type 2 regular graphs of odd order with
d(G) = 1/ 7|V(G)|. We also show that if §(G) = (|V(G)|+ 1) then x,(G) < A(G)+2
and that if 6(G) = 2| V(G)) then y,(G) < A(G)+ 3. We also characterize type 1 and type
2 regular graphs of odd order with d(G) = |V(G)|-3.

THEOREM 1. Let G be a graph of odd order with
(@) +2A(G) = (V(G)|+1).

Then
1:(G) < A(G)+2.

CoROLLARY. Let G be a graph of odd order with
3(G) = (MG +1).

Then
1r(G) S AG)+2.

Proof of Theorem 1. Let |[V(G)|=2n+1 for some n>=1. In this proof,
let = 6(G) and A = A(G), and let the vertices of G be vy, ..., V,,,;. For 1 <j < 2n—A,
let the pair v, v,_,,; be non-adjacent. It follows by applying Lemma 4 to the
complement of G that 2n— A such pairs of vertices exist.

From G form a graph G* by introducing a vertex »* and joining it
tO Upy_pi1s o> Vaner- Then G* has A+2 vertices, vy, p.1s--->Ugnsr, V¥, Of degree at
most A(G)+1, and 2n—A vertices, v,,...,0,,_,, Of degree at most A(G). Since
A = 3(V(G)|+1) = 4n—1), it follows that 2n+1—2(2n—A) = 2n—A. Therefore,
for 1 <j<2n—A, there is a vertex v;,,,,_4)-

Let F,, ..., F,,_, be edge-disjoint matchings of G* such that, for 1 <j<2n—A, F
misses the two vertices v; and v,,,,,_,,, contains the edge v,,,,-, v*, and misses no
further vertex. We show now that these matchings do exist.

We pick out these matchings one by one. For 1 €j< 2n—A, suppose that
F,...,F_, have been constructed. Let G}f = G*\(F, U...UF,_,) and let G; be the
simple graph formed from G} by adding in the edges v,0,,,-4+; a0d V(3_y4; Vazn-ayss
if they are not already in G}. Each vertex of G; has degree at least

S—(—1)26—(n—A)+1=3+A—2n+1.
Since 6+ 2A > 3(2n+1)+3, it follows that
0+A=2n+1232n+1)+3-2n+1>n+3 > H2n+2)+3).

Therefore by Lemma 3, the graph G; contains a Hamiltonian cycle containing the
path v;, 055,45 Vzn-ay+s» V*. Therefore G contains a matching F, which contains the
edge 'v*vmz‘,,_A)., misses the vertices v; and v,,,,, 4, and misses no other vertex.
Iterating this gives the required matchings F,, ..., F,,_,.

7-2
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Let G** = G*\(F/, U ... U F;,,_,). Then G** has 2n— A Vertices vy, ay415 > Vsizn-a
of degree at most A+1—(2n—A—1) = 2A—2n+2, and the remaining vertices have
degree at most 2A—2n+1. Since 6+ 2A > 3(2n+1)+3, it follows that

0(G**) 2 0+A-2n> (n+1)+(2n—A)+4,

and so it follows from Lemma 1 and Vizing’s theorem that G** can be edge-coloured
with 2A—2n+2 colours.

From an edge-colouring of G** with the 2A —2n+2 colours ¢,,_,;, .-+, Caras WE
form a total-colouring of G with the A+2 colours c,, ..., c,,, as follows. Each edge
of G which is also an edge of G** receives the same colour. For

22n—A)+1<j<2n+1,

the vertex v, receives the colour of the edge v,v*. For 1 <j < 2n—A, the two vertices
v, and v,,_,,; and the edges of F\{v*v,, ,),,} all receive the colour c,. It is easy to
check that this is a total-colouring of G.

This proves Theorem 1.

Let def(G) = Y, ,cv(e) (A(G)—d(v)). If G has a vertex-colouring with A(G)+1
colours such that the number of colour classes with parity different from |V(G)] is at
most def (G), then we call G conformable. It was shown in [9] that if G is type 1, then
G is conformable, but the converse need not be true. Chetwynd and Hilton [9] made
the following conjecture.

CoNJECTURE 1. Let A(G) = 3(|V(G)| +1). Then G is of type 1 if and only if every
subgraph H of G with A(H) = A(G) is conformable.

It is fairly easy to see that if G is of type 1, then G has no such non-conformable
subgraph. The graph K, , with n even is conformable but of type 2, so the figure
A(G) = (IV(G)|+ 1) cannot be made lower (if n is odd, then K,, , is not conformable).

In our next theorem we provide evidence for this conjecture by characterizing
regular type 1 graphs of odd order with degree, d(G), satisfying d(G) = 3/ T|V(G)).

THEOREM 2. Let G be a regular graph of odd order \V(G)| = 2n+1 with
d(G) = ;v TIV(G).

Then G is of type 1 if and only if every subgraph H of G with A(H) = A(G) is
conformable. Otherwise G is of type 2. (Note that 34/7 ~ 0.883.)

In [6] we made the conjecture that if G is a regular graph of even order, and if
d(G) = 3|V(G)|, then G is of class 1. In view of Conjecture 1, it seems most probable that
Theorem 2 also is true if d(G) = 3| V(G)). If that is the case, then there is an unexpected,
interesting aspect to it. For graphs of even order, it follows from Turan’s theorem that
if d(G) = Y V(G)|, then G need not contain a K,. This is true if G has even order, even
if G is regular. However if G is regular and has odd order then G is non-bipartite
and thus contains an odd circuit. It follows (as we show in Lemma 5 below) that if
UV(G)| € d(G) < Y V(G)|, then G will contain a K, and in fact it seems likely that it
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must contain many (vertex) disjoint graphs K, (although so far as we are aware, this has
not been established); now if G contains }(|V(G)| —d—1) (vertex) disjoint K, then G
has a vertex-colouring with

(@) =d=D)+{IV(G)-3(V(G)| —d—1)} = d+]1

colours, each colour occurring on an odd number of vertices, so G is conformable.
Thus it would follow from the condition in Theorem 2 that G is of type 1. Thus it
seems very probable that if }| V(G)| < d(G) < | V(G)|, and if G is regular of odd order,
then G must be of type 1. The fact that G will contain a K, follows from the following
easy lemma (which was kindly communicated to the authors by Dr J. Sheehan; see
also [18]).

LEMMA 5. If G is a regular graph whose shortest odd-cycle length is I, then
2
d(G) < 7IV(G)I-

Proof. Let C be a cycle of length /. Then each vertex not on C is joined to at most
two vertices of C, and thus there are at most 2(|V(G)| —/) further edges incident with
the vertices of C. But each vertex of C has d(G)— 2 further edges incident with it. Thus

(d(G)—-2) < 2(IM(G)I-D),
from which the lemma follows.
Theorem 2 follows easily from the following lemma.

LEMMA 6. Let G be a regular graph of odd order |V(G)| = 2n+1 satisfying
d=dG) 2 ;v TIV(G)I.

Let G contain a subgraph K, U...UK,, where K, ,...,K, are vertex-disjoint complete
graphs of odd orders i, ..., i, respectively, with i, >3 (1 <j<s) and

(i, +...+i)—s=2n—d.
Then G is of type 1.

REMARK. Since it could well be that i, = i, for some j # j the reader may well
feel that the notation here is unsatisfactory; however it is convenient, and we crave
his or her indulgence.

Proof. Since |V(G)| is odd, it follows that d = d(G) is even. Let i, > ... = i,. For
1<j<s, lety,,,...,0 : be the vertices of K, Let x = 12n—d) and let

8
{0100t = Uy 05000
Jj=1

Letv,  =Vaz415--.5 s ¢, = Vgz, and let the remaining vertices of V(G) be vy, g1, - Vg
From G form a graph G* by introducing a vertex v* and joining it to each vertex of
Ugzs1s ---»Vgnyr- Then v* and v, ,,, ..., 0,,,, €ach have degree d+1in G, and v, ...,v,
each have degree d.

Now let F, ..., F, be edge-disjoint matchings of G such that, for 1 <j < s, the
vertices missed by F, are precisely v, , ..., Uy 410 and F| includes the edge v*v,,,,; also

let F,,,, ..., F, be 1-factors.

z
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We show now that G* includes such a set of matchings. For 1 < < x, suppose
that K, ..., F,_; have been constructed. If 1 < j < s, we consider the graph G} obtained
from G*\{F, U ... UF_,} by joining v, . tov, .., (k=1,2,..,i—1). Ifs+1 <j< xwe
let Gf = G*\{F,U ... UF_,}. Then

82 d—(j—1) =d—j+1>d—Yn—d)+1 =d—n+1.
Since d > 3/ 7|V(G)| = n+1, it follows that
MG 2 3d—n+122n—3d+3 =4Q2n+2)+2x+1) > Y2n+2)+i).

Consequently, by Lemma 3, G; has a Hamiltonian cycle containing the path
V15595 +o0s Uy, i,v* Therefore G*\{F U...U F_} contains the required matching F,.
Iterating thrs shows that the matchings Fl, ..., F, do exist.

Let G** = G*\{F, U ... U F,}. Then G** is regular of degree

d+1—x=3%d—n+1.
Since d > 3/ 7|V(G)) it follows that
d(G**) =3d—n+123/TV(G)|—n+1 2 X v/T-1)(2n+2).

Therefore by Lemma 2, G** is of class 1.

Note that x+(@d—n+1) =d+1. From an edge-colouring of G** with the
3d—n+1 colours ¢,,,, ...,c,,, We can obtain a total-colouring of G with the d+1
colours ¢y, ..., c4,, as follows. Each edge of G which is also an edge of G** receives
the same colour. For 2x+s+1 <j < 2n+1, the vertex v, receives the colour of the
edge v,v*. For 1 <j<s, the j vertices v, ,...,v, , each receive the colour ¢;. For
1 <j < x, the edges of F\{v;v*} receive the colour ¢;. It is easy to check that this is a
total-colouring of G.

This proves Lemma 6.

Proof of Theorem 2. Suppose that G is a regular graph of odd order
satisfying d(G) = v/ 7|V(G)|. Then, since § < 31/7, it follows from Theorem 1 that
xr(G) € d(G)+2, and so G is of type 1 or type 2.

Now suppose that G is conformable. Then G has a vertex-colouring with d(G)+ 1
colours ¢y, ..., €441 in Which each colour class is odd. For 1 <j < d(G)+1, let the
number of vertices coloured ¢, be i,. We may assume that, for some s,

A A Y N A A
Then (i,+...+i)—s=2n—d, and G contains a subgraph K, U .. UK, where
K;,..., K, are vertex disjoint complete graphs of odd orders i}, ...,i,. By Lemma 6,

therefore G is of type 1.

Conversely, suppose that G is of type 1. Then, as is shown by an easy argument
in [9], G is conformable.

This proves theorem 2.

We now mention a result of Fournier [12] (which is also an immediate
consequence of Vizing’s adjacency lemma [21]). Let G, denote the subgraph of G
induced by the vertices of maximum degree.

LEMMA 7. If G, is a forest, then G is of class 1.

THEOREM 3. Let G be a regular graph of odd order, |V(G)| = 2n+1 = 3, with
d(G) = 2n—2. Then G is of type 1 if G contains a K,, and is of type 2 otherwise.
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Proof. The theorem is easy to check if n =1 or 2. From now on let n > 3.

Suppose first that G contains a K;. Let the vertices of this K; be v,,v, and v,. For
n = 4 we have

d=2n-223(2n+1)+2),

so, by Lemma 3, it follows that G U {v, v,,v,v,} has a Hamiltonian cycle, and so G
contains a matching F which misses v,,v, and v,, but misses no other vertex. If
n = 3itiseasy to see directly that Fexists. The graph G\ Fhas three non-adjacent vertices
of maximum degree, and so, by Lemma 7, it is of class 1. Let G\ F be edge-coloured
with colours ¢,,...,c,,_,. An easy counting argument shows that each colour is
missing from exactly one vertex. Therefore a total-colouring of G with the d(G)+ 1
colours ¢, ..., ¢,,_, can be obtained by colouring v,,v,,v, and the edges of F, with ¢,,
colouring the edges of G\ F the same, and colouring each vertex v of V(G)\{v,, v,,v5}
with the colour missing at v.

Now suppose that G contains no K. Then by the argument used in the proof of
Theorem 2, G is not conformable and so G is not of type 1. To see that G is of type
2, we argue as follows. Let v, v, and v,v, be edges of G. The argument above can be
used to show that d(G)+ 1 colours can be assigned to V(G) U E(G) so that the total-

colouring rules are obeyed everywhere except that v, and », (which are adjacent)
receive the same colour. Thus a total-colouring with d(G) + 2 colours can be obtained

by recolouring v, with a further colour.

THEOREM 4. Let G be a graph of odd order with

d(G)+A(G) = ING)-1.
Then
12(G) < AG)+3.
COROLLARY. Let G be a graph of odd order with

6(G) = V(G —3.
Then
1r(G) < A(G)+3.
The proof of Theorem 4 is very similar to the proof of Theorem 1, the difference
being that we no longer have to restrict 4(G) sufficiently for Lemma 1 to be applied.

Proof of Theorem 4. We only indicate here the points where the proof of Theorem
4 differs from that of Theorem 1.

For 1 <j < 2n—A, the graphs G; are defined as before. If j < 2n— A, then each
vertex of G; has degree at least —(j—1) > 6+A—2n+42. If j = 2n—A then in G},
vy, ..., v;_, haveeach beenincluded inall but one of F, ..., F,_; and so have degree at least
0—(j—2) 2 6+A—2n+2. All other vertices of G; have at least this degree except
possibly v,,,_,. This may have degree aslow as 0 + A—2n+ 1. Provided n = 3, it follows
from Lemma 3 that G; has a Hamiltonian cycle containing the path

Vs Ungan—ayess Vian-ayes V-
(If n < 2, then [V(G)| < S, and the total chromatic number conjecture is known to be
true in this case; see, for example, [16].)

The graph G** has maximum degree A+1—(2n—A—1) = 2A—2n+3 and can be
edge-coloured with 2A—2n+3 colours. From this we go on to construct a total
colouring of G from the edge-colouring of G** as before. The only difference is that
one more colour is used this time in the edge-colouring of G**.
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4. Graphs of even order

In this section we show that, for graphs of even order with §(G) = $|V(G)|, the
total chromatic number conjecture holds. This is a stronger result than that obtained
in the odd-order case, so it is surprising that the question of the classification of
regular graphs of even order and high degree into type 1 and 2 graphs remains
unresolved. In the case of the cocktail party graph, this question is resolved.

THEOREM 5. Let G be a graph of even order with
0(G)+ A(G) = ¥ V(G)|—1).

Then
1r(G) < AG)+2.

COROLLARY. Let G be a graph of even order with

G = V(G| -1).
Then
1r(G) < A(G)+2.

Proof of Theorem 5. Let |V(G)| = 2n. The theorem is true if » = 1, so suppose
that n > 2. Let § = 8(G) and A = A(G). Let the vertices of G be v,,...,v,, and, for
1<j<2n—A-1,letv, and v,, ,_,,, be non-adjacent. By Lemma 4, it follows that
2n—1— A disjoint pairs of non-adjacent vertices exist.

From G form a graph G* by introducing a vertex v* and joining it to the
2A—2n+2 VErtices vyp,_p_1)415 -++3 Vg Then G* has 2A—2n+ 2 vertices of degree at
most A+1, the vertex v* has degree 2A —2n+2, and the remaining vertices have
degree at most A. Since 2n—1 = A, it follows that A+1 > 2A—2n+2, and so the
maximum degree of G* is at most A+ 1.

Now let F,, ..., F,,_,_, be edge-disjoint matchings of G* such that, for

1<j<2n-A-1,

F; misses the three vertices v;,v,, 5, v*, but misses no further vertices.

‘We now proceed to show that these matchings do exist. We pick them out one
by one. For 1<j<2n—A-1, suppose that F,...,F_, have been constructed.
Let G} = G*\(F,U...UF_)), and let G} = G} U{v,05,_s_y4j» V3n_a_14;v*}. Then, for
1<j<2n—-A-2,

0—j+1206—-2n—A-1)+1=6+A-2n+2>¥Q2n+1)+2),

and, if j = 2n—A—1, then the least degree in G*\(F{ U ... U F,_,), apart from that of
v*, is at least 6 —(j—2) =J5+A~2n+3 > 4(2n+1)+2). So in each case the least
degree in G, apart from possibly that of v*, is at least 3(2n+1)+2). If dg(v*) <3
then it would follow that 2A—2n+2 < 3, so A < s, which is impossible. Therefore
G+(v*) = 4. Therefore, by Lemma 3, the graph G contains a Hamiltonian cycle
contalmng the path v,,v,,_,_,.,, v*. Therefore G} contams a matching F, which misses
the vertices v,,v,,_,_,,, and v*, but misses no other vertex. Iterating thls gives the
required matchings F,...,F,,_,_,.
Let G** = G*\(F,U...UF,_,_,). Since the degree of v* is 2A—2n+2 and
A+1—(2n—A—1)=2A—2n+2, the maximum degree of G** is 2A—2n+2.
Therefore, by Vizing’s theorem, G** can be edge-coloured with 2A —2n+ 3 colours.
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From an edge-colouring of G** with the 2A—2n+3 colours c¢,,_j, ..., Cpror WE
form a total-colouring of G with the A+2 colours ¢,, ..., c,,, as follows. Each edge
of G which is also an edge of G** receives the same colour. For

22n—A—-1)+1<j < 2n,

the vertex v, receives the colour of the edge v,v*. For 1 <j<2n—A-1, the two
vertices v; and v,_,_;,,; €ach receive the colour ¢;, and the edges of F,n E(G) also
receive the colour c,. It is easy to check that this is a total-colouring of G.

This proves Theorem 5.

THEOREM 6. Let G be a cocktail-party graph (that is, K,, less a 1-factor). Then G is
of type 1 if and only if |V(G)| # 4.

Proof. If |V(G)| = 4. then G = C, which is of type 2. If | F(G)| = 6 then Theorem
6 follows from a result in [1] by Andersen and Hilton. (It also follows from an
unpublished result of Higgkvist, and probably there are other proofs as well.)

S. Graphs of high minimum degree

Finally, we summarise the results which we now know are true for all graphs of
high minimum degree.

THEOREM 7. If G is a graph with §(G) = ¥(|V(G)|+ 1) then the total chromatic
number conjecture is true for G.

Proof. This follows from the corollaries to Theorems 1 and 5.
THEOREM 8. If G is a graph with 6(G) = 3(V(G)|—1) then x.(G) < d(G)+3.
Proof. This follows from the corollaries to Theorems 4 and 5.

Acknowledgements and comment. We would like to acknowledge with thanks
useful conversions we held with Drs D. G. Hoffman, P. D. Johnson and J. Sheehan.
The present paper is a development of an earlier unpublished manuscript of the first
two authors entitled ‘The total chromatic number of regular graphs of high degree’,
written in 1987.

Remarks added in proof. A number of points have recently come to our attention
which ought to be mentioned here. Recently the second author and Hind [23] have
proved that if A(G) = 3|V(G)| then x,(G) = A(G)+2. The bound y,(G) = A(G)+1+1
(which is marginally weaker than the one of the first author and Haggkvist [5] was
proved independently by McDiarmid and Reed (see [24]). The bounds of Lemmas 1
and 2 were recently proved independently by Niessen and Volkman [25]. An isolated
counterexample to Conjecture 1 has been discovered by Bor-Liang Chen and
Hung-Lin Fu [22].
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